Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.676
Filtrar
1.
PLoS Pathog ; 20(3): e1012094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536895

RESUMO

Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis in humans worldwide. The major virulence factor responsible for the enteropathogenicity of this pathogen is type III secretion system 2 (T3SS2), which is encoded on the 80-kb V. parahaemolyticus pathogenicity island (Vp-PAI), the gene expression of which is governed by the OmpR-family transcriptional regulator VtrB. Here, we found a positive autoregulatory feature of vtrB transcription, which is often observed with transcriptional regulators of bacteria, but the regulation was not canonically dependent on its own promoter. Instead, this autoactivation was induced by heterogeneous transcripts derived from the VtrB-regulated operon upstream of vtrB. VtrB-activated transcription overcame the intrinsic terminator downstream of the operon, resulting in transcription read-through with read-in transcription of the vtrB gene and thus completing the autoregulatory loop for vtrB gene expression. The dampening of read-through transcription with an exogenous strong terminator reduced vtrB gene expression. Furthermore, a V. parahaemolyticus mutant with defects in the vtrB autoregulatory loop also showed compromises in T3SS2 expression and T3SS2-dependent cytotoxicity in vitro and enterotoxicity in vivo, indicating that this autoregulatory loop is essential for sustained vtrB activation and the consequent robust expression of T3SS2 genes for pathogenicity. Taken together, these findings demonstrate that the regulatory loop for vtrB gene expression based on read-through transcription from the upstream operon is a crucial pathway in T3SS2 gene regulatory network to ensure T3SS2-mediated virulence of V. parahaemolyticus.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vibrioses/genética , Vibrioses/microbiologia , Regulação Bacteriana da Expressão Gênica
2.
Microb Pathog ; 190: 106611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467165

RESUMO

Vibrio anguillarum is an important fish pathogen in mariculture, which can infect fish with great economic losses. In this study, a Vibrio anguillarum isolated from Sebastes schlegelii was named VA1 and was identified and characterized from aspects of morphology, physiological and biochemical characteristics, 16SRNA, virulence genes, drug sensitivity, and extracellular enzyme activity. At the same time, The VA1 was investigated at the genomic level. The results showed that a Gram-negative was isolated from the diseased fish. The VA1 was characterized with uneven surface and visible flagella wrapped in a sheath and microbubble structures. The VA1 was identified as Vibrio anguillarum based on the 16S RNA sequence and physiological and biochemical characteristics. The VA1 carried most of the virulence genes (24/29) and was resistant to penicillin, oxacillin, ampicillin, cefradine, neomycin, pipemidic acid, ofloxacin, and norfloxacin. The pathogenicity of the isolated strain was confirmed by an experimental analysis, and its LD50 was 6.43 × 106 CFU/ml. The VA1 had the ability to secrete gelatinase, protease, and amylase, and it had α-hemolysis. The whole genome size of the VA1 was 4232328bp and the G + C content was 44.95 %, consisting of two circular chromosomes, Chromosome1 and Chromosome2, with no plasmid. There were 1006 predicted protein coding sequences (CDSs). A total of 526 genes were predicted as virulence-related genes which could be classified as type IV pili, flagella, hemolysin, siderophore, and type VI secretion system. Virulence genes and correlation data were supported with the histopathological examination of the affected organs and tissues. 194 genes were predicted as antibiotic resistance genes, including fluoroquinolone antibiotic, aminoglycoside antibiotic, and beta-lactam resistant genes, which agreed with the results of the above drug sensitivity, indicating VA1 to be a multidrug-resistant bacterium. This study provided a theoretical basis for a better understanding of pathogenicity and antibiotic resistance, which might contribute to the prevention of V. anguillarum in the future.


Assuntos
Antibacterianos , Doenças dos Peixes , Genoma Bacteriano , Filogenia , Vibrioses , Vibrio , Fatores de Virulência , Sequenciamento Completo do Genoma , Vibrio/genética , Vibrio/patogenicidade , Vibrio/isolamento & purificação , Vibrio/classificação , Vibrio/efeitos dos fármacos , Doenças dos Peixes/microbiologia , Animais , Fatores de Virulência/genética , Vibrioses/microbiologia , Vibrioses/veterinária , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Testes de Sensibilidade Microbiana , Virulência/genética , Peixes/microbiologia , Composição de Bases
3.
Microb Pathog ; 189: 106597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395316

RESUMO

Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.


Assuntos
Bass , Doenças dos Peixes , Vibrioses , Vibrio , Animais , Vibrioses/microbiologia , Bass/microbiologia , Virulência/genética , Vibrio/genética , Antibacterianos , Doenças dos Peixes/microbiologia
4.
Mar Biotechnol (NY) ; 26(2): 306-323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367180

RESUMO

Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.


Assuntos
Anguilla , Doenças dos Peixes , Perfilação da Expressão Gênica , Fígado , Vibrioses , Vibrio , Animais , Vibrio/patogenicidade , Anguilla/microbiologia , Anguilla/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Vibrioses/veterinária , Vibrioses/microbiologia , Vibrioses/imunologia , Fígado/microbiologia , Fígado/patologia , Baço/microbiologia , Baço/patologia , Transcriptoma , Rim/microbiologia , Rim/patologia , Dose Letal Mediana , Carga Bacteriana
5.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338671

RESUMO

Vibrio parahaemolyticus is the primary foodborne pathogen known to cause gastrointestinal infections in humans. Nevertheless, the molecular mechanisms of V. parahaemolyticus pathogenicity are not fully understood. Prophages carry virulence and antibiotic resistance genes commonly found in Vibrio populations, and they facilitate the spread of virulence and the emergence of pathogenic Vibrio strains. In this study, we characterized three such genes, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055, within the largest prophage gene cluster in V. parahaemolyticus CHN25. The deletion mutants ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 were derived with homologous recombination, and the complementary mutants ΔVpaChn25_0713-com, ΔVpaChn25_0714-com, ΔVpaChn25_RS25055-com, ΔVpaChn25_RS25055-0713-0714-com were also constructed. In the absence of the VpaChn25_RS25055, VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055-0713-0714 genes, the mutants showed significant reductions in low-temperature survivability and biofilm formation (p < 0.001). The ΔVpaChn25_0713, ΔVpaChn25_RS25055, and ΔVpaChn25_RS25055-0713-0714 mutants were also significantly defective in swimming motility (p < 0.001). In the Caco-2 model, the above four mutants attenuated the cytotoxic effects of V. parahaemolyticus CHN25 on human intestinal epithelial cells (p < 0.01), especially the ΔVpaChn25_RS25055 and ΔVpaChn25_RS25055-0713-0714 mutants. Transcriptomic analysis showed that 15, 14, 8, and 11 metabolic pathways were changed in the ΔVpaChn25_RS25055, ΔVpaChn25_0713, ΔVpaChn25_0714, and ΔVpaChn25_RS25055-0713-0714 mutants, respectively. We labeled the VpaChn25_RS25055 gene with superfolder green fluorescent protein (sfGFP) and found it localized at both poles of the bacteria cell. In addition, we analyzed the evolutionary origins of the above genes. In summary, the prophage genes VpaChn25_0713, VpaChn25_0714, and VpaChn25_RS25055 enhance V. parahaemolyticus CHN25's survival in the environment and host. Our work improves the comprehension of the synergy between prophage-associated genes and the evolutionary process of V. parahaemolyticus.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/metabolismo , Prófagos/genética , Células CACO-2 , Virulência/genética , Família Multigênica , Vibrioses/microbiologia
6.
FEMS Microbiol Lett ; 3712024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066691

RESUMO

The pathogenic characteristics of V. parahaemolyticus isolated from a gastroenteritis outbreak event in Deqing County of Huzhou City in 2022 were analyzed. Pathogen detection was performed on 30 anal swabs (26 patients, 1 chef and 3 waiters). The isolates of V. parahaemolyticus were analyzed by serum typing, pulsed field gel electrophoresis (PFGE) molecular typing, multiplex fluorescent PCR detection of tdh/trh virulence gene and drug sensitivity test. 15 patients were positive for V. parahaemolyticus, 1 patient was positive for V. parahaemolyticus and Enteroaggregative E. coli (EAEC), 1 patient was positive for EAEC, and the chef was positive for EAEC. The serotype test results of the 16 V. parahaemolyticus were 14 O4:KUT and 2 O10:K4. All samples were negative for other tested bacteria. All V. parahaemolyticus strains were positive for tdh genes and negative for trh gene. The 16 isolates were 100% resistant to ampicillin (AMP), and sensitive to the other12 antibiotics. From the results of serotype and PFGE, the V. parahaemolyticus strains with two serotypes are clustered into two branches according to their serotypes. The three EAEC strains were non-homologous. In conclusion, we detected V. parahaemolyticus and EAEC from an outbreak of gastroenteritis. And V. parahaemolyticus with two serotypes may be the cause of this event, according to the traceability results.


Assuntos
Gastroenterite , Vibrioses , Vibrio parahaemolyticus , Humanos , Escherichia coli , Sorotipagem , Vibrioses/epidemiologia , Vibrioses/microbiologia , Gastroenterite/epidemiologia , Surtos de Doenças
7.
Microb Pathog ; 187: 106519, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158142

RESUMO

Vibrio splendidus is one of the main pathogens caused diseases with a diversity of marine cultured animals, especially the skin ulcer syndrome in Apostichopus japonicus. However, limited virulence factors have been identified in V. splendidus. In this study, one aerAVs gene coding an aerolysin of V. splendidus was cloned and conditionally expressed in Escherichia coli. The haemolytic activity of the recombinant AerAVs was analyzed. Western blotting was used to study of the secretion pathway of proaerolysin, and it showed that the proaerolysin was secreted via both outer membrane vehicles and classical secretion pathways. Since no active protein of aerolysin was obtained, one aerolysin surface displayed bacterium DH5α/pAT-aerA was constructed, and its haemolytic activity and virulence were determined. The results showed that the AerAVs displayed on the surface showed obvious haemolytic activity and cytotoxic to the coelomocyte of A. japonicus. Artificial immerse infection separately using the DH5α/pAT or DH5α/pAT-aerA was conducted. The result showed that the mortality percent of sea cucumber A. japonicus challenged with DH5α/pAT-aerA was 38.89 % higher than that challenged with the control strain DH5α/pAT, and earlier death occurred. Combined all the results indicates that aerolysin with the haemolytic activity and cytotoxic activity is a virulence factor of V. splendidus.


Assuntos
Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros , Stichopus , Vibrioses , Vibrio , Animais , Vibrioses/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Clonagem Molecular , Stichopus/genética , Stichopus/microbiologia , Imunidade Inata
8.
Wei Sheng Yan Jiu ; 52(6): 956-964, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38115661

RESUMO

OBJECTIVE: To evaluate the correlation among the three molecular typing method of pulsed field gel electrophoresis(PFGE), repetitive extragenic palindromic(REP)-PCR and en-terobacterial repetitive intergenic consensus(ERIC)-PCR, and to explore the genetic relationship among strains, and to further understand the distribution and epidemic trend of Vibrio parahaemolyticus in Liaoning Province by combining Serotype analysis. METHODS: Serum typing, PFGE, REP-PCR, and ERIC-PCR molecular typing and cluster analysis were performed on 150 VP isolates from Liaoning Province in 2018. RESULTS: 118 isolates could be divided into 14 Serotype, and 32 isolates could not be classified. The main serotypes were O3, O1 and O2. The resolution(DI) of PFGE is 0.969, the resolution(DI) of REP-PCR is 0.948, and the resolution(DI) of ERIC-PCR is 0.927. The Serotype O3 group strains are highly similar to the molecular types of O1 group strains. CONCLUSION: In 2018, the epidemic Serotype of clinical VP isolates in Liaoning Province is still O3: K6, and the epidemic serotype of food VP isolates is still O2. The result of PFGE, REP-PCR, and ERIC-PCR typing method are consistent, and the resolution and reproducibility of PFGE typing method are superior to the other two method. The Serotype O3 group is closely related to O1 group.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase/métodos , Tipagem Molecular , Vibrioses/epidemiologia , Vibrioses/microbiologia , Eletroforese em Gel de Campo Pulsado
9.
Microbiol Spectr ; 11(6): e0150223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37843303

RESUMO

IMPORTANCE: In this study, Vibrio parahaemolyticus strains were collected from a large number of aquatic products globally and found that temperature has an impact on the virulence of these bacteria. As global temperatures rise, mutations in a gene marker called thermolabile hemolysin (tlh) also increase. This suggests that environmental isolates adapt to the warming environment and become more pathogenic. The findings can help in developing tools to analyze and monitor these bacteria as well as assess any link between climate change and vibrio-associated diseases, which could be used for forecasting outbreaks associated with them.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Virulência/genética , Proteínas Hemolisinas/genética , Aquecimento Global , Vibrioses/microbiologia
10.
Curr Microbiol ; 80(12): 371, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838636

RESUMO

Vibrio parahaemolyticus, the leading cause of bacterial seafood-associated gastroenteritis, can form biofilms. In this work, the gene expression profiles of V. parahaemolyticus during biofilm formation were investigated by transcriptome sequencing. A total of 183, 503, and 729 genes were significantly differentially expressed in the bacterial cells at 12, 24 and 48 h, respectively, compared with that at 6 h. Of these, 92 genes were consistently activated or repressed from 6 to 48 h. The genes involved in polar flagellum, chemotaxis, mannose-sensitive haemagglutinin type IV pili, capsular polysaccharide, type III secretion system 1 (T3SS1), T3SS2, thermostable direct hemolysin (TDH), type VI secretion system 1 (T6SS1) and T6SS2 were downregulated, whereas those involved in V. parahaemolyticus pathogenicity island (Vp-PAI) (except for T3SS2 and TDH) and membrane fusion proteins were upregulated. Three extracellular protease genes (vppC, prtA and VPA1071) and a dozen of outer membrane protein encoding genes were also significantly differentially expressed during biofilm formation. In addition, five putative c-di-GMP metabolism-associated genes were significantly differentially expressed, which may account for the drop in c-di-GMP levels after the beginning of biofilm formation. Moreover, many putative regulatory genes were significantly differentially expressed, and more than 1000 putative small non-coding RNAs were detected, suggesting that biofilm formation was tightly regulated by complex regulatory networks. The data provided a global view of gene expression profiles during biofilm formation, showing that the significantly differentially expressed genes were involved in multiple cellular pathways, including virulence, biofilm formation, metabolism, and regulation.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Transcriptoma , Vibrio parahaemolyticus/genética , Virulência/genética , Fatores de Virulência/genética , Biofilmes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vibrioses/microbiologia , Regulação Bacteriana da Expressão Gênica
11.
Fish Shellfish Immunol ; 141: 109078, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716494

RESUMO

Heat shock proteins play an important role in host defense, and modulate immune responses against pathogen infection. In this study, a novel HSC70 from the mud crab (designated as SpHSC70) was cloned and characterized. The full length of SpHSC70 contained a 58 bp 5'untranslated region (UTR), an open reading frame (ORF) of 2,046 bp and a 3'UTR of 341 bp. The SpHSC70 protein included the conserved DnaK motif. The mRNA of SpHSC70 was highly expressed in the hemocytes, heart and hepatopancreas, and lowly expressed in the intestine. The subcellular localization results indicated that SpHSC70 was localized in both the cytoplasm and the nucleus. Moreover, SpHSC70 was significantly responsive to bacterial challenge. RNA interference experiment was designed to investigate the roles of SpHSC70 in response to bacterial challenge. V. parahaemolyticus infection induced the expression levels of SpPO, SpHSP70, SpSOD and SpCAT. Knocking down SpHSC70 in vivo can decrease the expression of these genes after V. parahaemolyticus infection. These results suggested that SpHSC70 could play a vital role in defense against V. parahaemolyticus infection via activating the immune response and antioxidant defense signaling pathways in the mud crab.


Assuntos
Braquiúros , Vibrioses , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Vibrioses/microbiologia , Interferência de RNA , Bactérias/metabolismo , Proteínas de Artrópodes , Filogenia
13.
Microbiol Spectr ; 11(4): e0217022, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37260413

RESUMO

Vibrio parahaemolyticus is a marine bacterium coming from estuarine environments, where the migratory birds can easily be colonized by V. parahaemolyticus. Migratory birds may be important reservoirs of V. parahaemolyticus by growth and re-entry into the environment. To further explore the spreading mechanism of V. parahaemolyticus among marine life, human beings, and migratory birds, we aimed to investigate the characteristics of the genetic diversity, antimicrobial resistance, virulence genes, and a potentially informative gene marker of V. parahaemolyticus isolated from migratory birds in China. This study recovered 124 (14.55%) V. parahaemolyticus isolates from 852 fecal and environmental (water) samples. All of the 124 strains were classified into 85 known sequence types (STs), of which ST-2738 was most frequently identified. Analysis of the population structure using whole-genome variation of the 124 isolates illustrated that they grouped into 27 different clonal groups (CGs) belonging to the previously defined geographical populations VppX and VppAsia. Even though these genomes have high diversity, an extra copy of tRNA-Gly was presented in all migratory bird-carried V. parahaemolyticus isolates, which could be used as a potentially informative marker of the V. parahaemolyticus strains derived from birds. Antibiotic sensitivity experiments revealed that 47 (37.10%) isolates were resistant to ampicillin. Five isolates harbored the plasmid-mediated quinolone resistance (PMQR) gene qnrD, which has not previously been identified in this species. The investigation of antibiotic resistance provides the basic knowledge to further evaluate the risk of enrichment and reintroduction of pathogenic V. parahaemolyticus strains in migratory birds. IMPORTANCE The presence of V. parahaemolyticus in migratory birds' fecal samples implies that the human pathogenic V. parahaemolyticus strains may also potentially infect birds and thus pose a risk for zoonotic infection and food safety associated with re-entry into the environment. Our study firstly highlights the extra copy of tRNA as a potentially informative marker for identifying the bird-carried V. parahaemolyticus strains. Also, we firstly identify the plasmid-mediated quinolone resistance (PMQR) gene qnrD in V. parahaemolyticus. To further evaluate the risk of enrichment and reintroduction of pathogenic strains carried by migratory birds, we suggest conducting estuarine environmental surveillance to monitor the antibiotic resistance and virulence factors of bird-carried V. parahaemolyticus isolates.


Assuntos
Quinolonas , Vibrioses , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Quinolonas/farmacologia , Antibacterianos/farmacologia , Ampicilina , Plasmídeos/genética , Vibrioses/microbiologia
14.
Acta Vet Scand ; 65(1): 28, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365572

RESUMO

Vibriosis is a bacterial disease in fish caused by the Gram negative bacterium Vibrio anguillarum with severe impact on rainbow trout (Oncorhynchus mykiss) farming. Sustainable control methods should be developed and we here show that marker assisted selective breeding of fish naturally resistant to the disease is feasible. We have validated the use of a single nucleotide polymorphism (SNP) marker SNP AX-89,945,921 (QTL on chromosome 21). The QTL was previously found associated with resistance to vibriosis and described following a genome wide association analysis (GWAS) of trout exposed to the bacterium. For this validation spawners were genotyped by use of the 57 K Axiom®Trout Microarray (Affymetrix) and homozygous male fish carrying the allele with the SNP AX-89,945,921 were then selected and used to fertilize eggs from outbred female trout resulting in fish all carrying the SNP (QTL-fish). Control fish (non-QTL fish) were produced by fertilizing the same batch of eggs by use of male parents negative for the SNP. The fish were exposed in freshwater to V. anguillarum (water bath infection) at 19 C°. A total of 900 fish were challenged in a common garden set-up in triplicate. A bacterial solution of V. anguillarum (serotype O1) was added to each of three freshwater fish tanks, each with 150 QTL and 150 non-QTL fish. Fish were tagged by tail fin cut (upper/lower) to discern the two groups, whereafter fish were monitored around the clock to detect disease signs and remove moribund fish. Clinical vibriosis developed within two days in non-QTL-fish (overall morbidity of 70%). QTL fish developed clinical signs later and the morbidity was significantly lower and did not reach 50%. Rainbow trout farming may benefit from using the QTL associated with higher resistance towards vibriosis. The effect may be optimized in the future by use of both male and female parents homozygous for the marker allele.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Vibrioses , Vibrio , Feminino , Masculino , Animais , Oncorhynchus mykiss/genética , Estudo de Associação Genômica Ampla/veterinária , Vibrio/genética , Vibrioses/genética , Vibrioses/veterinária , Vibrioses/microbiologia , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia
15.
Fish Shellfish Immunol ; 139: 108879, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271326

RESUMO

The orange-spotted grouper (Epinephelus coioides) is a high economic value aquacultural fish in China, however, it often suffers from the outbreak of parasitic ciliate Cryptocaryon irritans as well as bacterium Vibrio harveyi which bring great loss in grouper farming. In the present study, we established a high dose C. irritans local-infected model which caused the mortality of groupers which showed low vitality and histopathological analysis demonstrated inflammatory response and degeneration in infected skin, gill and liver. In addition, gene expression of inflammatory cytokines was detected to assist the estimate of inflammatory response. Furthermore, we also found that the activity of Na+/K+ ATPase in gill was decreased in groupers infected C. irritans and the concentration of Na+/Cl- in blood were varied. Base on the morbidity symptom occurring in noninfected organs, we hypothesized that the result of morbidity and mortality were due to secondary bacterial infection post parasitism of C. irritans. Moreover, four strains of bacteria were isolated from the infected site skin and liver of local-infected groupers which were identified as V. harveyi in accordance of phenotypic traits, biochemical characterization and molecular analysis of 16S rDNA genes, housekeeping genes (gyrB and cpn60) and species-specific gene Vhhp2. Regression tests of injecting the isolated strain V. harveyi has showed high pathogenicity to groupers. In conclusion, these findings provide the evidence of coinfections with C. irritans and V. harveyi in orange-spotted grouper.


Assuntos
Bass , Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Vibrioses , Vibrio , Animais , Bass/metabolismo , Vibrio/metabolismo , Cilióforos/fisiologia , Vibrioses/microbiologia , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/parasitologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
16.
Am Surg ; 89(9): 3896-3897, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37170537

RESUMO

Vibrio vulnificus is an opportunistic gram-negative rod-shaped bacteria found in warm, low salinity waters. Transmission through open wounds or consumption of contaminated seafood can lead to wound infections, sepsis, and potentially death. A 44-year-old man with a history of poly-substance abuse, cirrhosis, and recent oyster consumption presented to the emergency department in June with acute onset bilateral leg pain associated with rash and fever. Within 6 hours of his arrival, the rash rapidly progressed to large bullae with extensive necrosis ascending to the level of the abdomen, and he developed septic shock. Despite prompt surgical intervention and appropriate antibiotic and resuscitative therapies, the patient had progressive multi-system organ failure and died 7 days after admission. Concurrent necrotizing fasciitis with sepsis secondary to V. vulnificus infection is rare and potentially fatal, as demonstrated in this case.


Assuntos
Exantema , Fasciite Necrosante , Sepse , Vibrioses , Vibrio vulnificus , Masculino , Humanos , Adulto , Vibrioses/complicações , Vibrioses/diagnóstico , Vibrioses/microbiologia , Sepse/etiologia , Fasciite Necrosante/diagnóstico , Fasciite Necrosante/etiologia , Fasciite Necrosante/terapia , Alimentos Marinhos/efeitos adversos , Exantema/complicações
17.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018030

RESUMO

Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. A distinctive feature of the O3:K6 pandemic clone, and its derivatives, is the presence of a second, phylogenetically distinct, type III secretion system (T3SS2) encoded within the genomic island VPaI-7. The T3SS2 allows the delivery of effector proteins directly into the cytosol of infected eukaryotic cells to subvert key host-cell processes, critical for V. parahaemolyticus to colonize and cause disease. Furthermore, the T3SS2 also increases the environmental fitness of V. parahaemolyticus in its interaction with bacterivorous protists; hence, it has been proposed that it contributed to the global oceanic spread of the pandemic clone. Several reports have identified T3SS2-related genes in Vibrio and non-Vibrio species, suggesting that the T3SS2 gene cluster is not restricted to the Vibrionaceae and can mobilize through horizontal gene transfer events. In this work, we performed a large-scale genomic analysis to determine the phylogenetic distribution of the T3SS2 gene cluster and its repertoire of effector proteins. We identified putative T3SS2 gene clusters in 1130 bacterial genomes from 8 bacterial genera, 5 bacterial families and 47 bacterial species. A hierarchical clustering analysis allowed us to define six T3SS2 subgroups (I-VI) with different repertoires of effector proteins, redefining the concepts of T3SS2 core and accessory effector proteins. Finally, we identified a subset of the T3SS2 gene clusters (subgroup VI) that lacks most T3SS2 effector proteins described to date and provided a list of 10 novel effector candidates for this subgroup through bioinformatic analysis. Collectively, our findings indicate that the T3SS2 extends beyond the family Vibrionaceae and suggest that different effector protein repertories could have a differential impact on the pathogenic potential and environmental fitness of each bacterium that has acquired the Vibrio T3SS2 gene cluster.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Vibrionaceae , Humanos , Sistemas de Secreção Tipo III , Filogenia , Vibrioses/microbiologia , Vibrio parahaemolyticus/genética
18.
Fish Shellfish Immunol ; 136: 108729, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011739

RESUMO

The transcription factor Nrf2 plays vital roles in detoxification and antioxidant enzymes against oxidative stress. However, the function of Nrf2 in crustaceans is not well studied. In this study, a novel Nrf2 gene from the mud crab (Sp-Nrf2) was identified. It was encoded 245 amino acids. Sp-Nrf2 expression was ubiquitously expressed in all tested tissues, with the highest expression level in the gill. Sp-Nrf2 protein was mainly located in the nucleus. The expression levels of Sp-Nrf2, and antioxidant-related genes (HO-1 and NQO-1) were induced after Vibrio parahaemolyticus infection, indicating that Nrf2 signaling pathway was involved in the responses to bacterial infection. Over-expression of Sp-Nrf2 could improve cell viability after H2O2 exposure, indicating that Sp-Nrf2 might relieve oxidative stress. Silencing of Sp-Nrf2 in vivo decreased HO-1 and NQO-1 expression. Moreover, knocking down Sp-Nrf2 in vivo can increase malondialdehyde content and the mortality of mud crabs after V. parahaemolyticus infection. Our results indicated that Nrf2 signaling pathway played a significant role in immune response against bacterial infection.


Assuntos
Infecções Bacterianas , Braquiúros , Enteropatias , Vibrioses , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Vibrioses/microbiologia , Transdução de Sinais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Filogenia , Imunidade Inata
19.
mSystems ; 8(2): e0068222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36939368

RESUMO

Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle. IMPORTANCE V. vulnificus causes necrotizing skin and soft tissue infections (NSSTIs) in severe cases, with high mortality and sign of rapid deterioration. Despite the severity of the infection, the dysfunction of the host metabolism in skeletal muscle triggered by V. vulnificus is poorly understood. In this study, by using a mouse wound infection model, we revealed characteristic changes in muscle catabolism and energy metabolism in skeletal muscle associated with bacterial proliferation in the infected tissues. Understanding such metabolic changes in V. vulnificus-infected tissue may provide crucial information to identify the mechanism via which V. vulnificus induces severe infections. Moreover, our metabolite data may be useful for the recognition, identification, or detection of V. vulnificus infections in clinical studies.


Assuntos
Toxinas Bacterianas , Vibrioses , Humanos , Toxinas Bacterianas/metabolismo , Vibrioses/microbiologia , Fatores de Virulência/metabolismo , Músculo Esquelético/metabolismo
20.
J Fish Dis ; 46(5): 563-574, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36872644

RESUMO

In this study, we have isolated four strains of Vibrio anguillarum, revealing that they share the same serotype of O1, biochemical characteristics and virulence factor genes. However, there were differences in haemolytic activity among the bacterial strains; a strain with lower pathogenicity showed γ-haemolytic activity, whereas other virulent strains showed α-haemolytic activity on blood agar and higher empA gene expression in RTG-2 cell line. The most virulent strain was V. anguillarum RTBHR from diseased masu salmon (Oncorhynchus masou), which resulted in mortality of 100% and 93.3% when injected intraperitoneally at concentrations of 9 × 105 and 6.3 × 105 colony-forming units/fish in rainbow trout (Oncorhynchus mykiss) and Coho salmon (Oncorhynchus kisutch), respectively. A formalin-inactivated vaccine of V. anguillarum RTBHR induced a protective and specific immunity in rainbow trout as the vaccinated fish exhibited low cumulative mortality in a challenge test and a high specific antibody response in enzyme-linked immunosorbent assay at 8 weeks post-vaccination. The produced antibody was bound to bacterial proteins of 30-37 kDa in size. This adaptive immune response was detected as early as day 1, with quantitative polymerase chain reaction analysis revealing the upregulated expression of genes encoding for TCRα, T-bet, mIgM and sIgM in rainbow trout. This suggested that the vaccine induced T (probably a more dominant Th1 response) and B cell responses. In conclusion, the vaccine successfully protected fish from V. anguillarum infection by eliciting cellular and humoral immune responses.


Assuntos
Doenças dos Peixes , Oncorhynchus mykiss , Vibrioses , Vibrio , Animais , Oncorhynchus mykiss/microbiologia , Virulência , Vacinas de Produtos Inativados , Doenças dos Peixes/microbiologia , Vibrioses/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...